RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2018 Volume 209, Number 5, Pages 166–186 (Mi sm8888)

This article is cited in 1 paper

The Fourier transform of bivariate functions that depend only on the maximum of the absolute values of their variables

R. M. Trigub

Sumy State University, Ukraine

Abstract: Given an $L_1(\mathbb{R}^2)$-function $f(x_1,x_2)=f_0(\max\{|x_1|,|x_2|\})$, necessary conditions and sufficient conditions for its Fourier transform $\widehat{f}$ to lie in $L_1(\mathbb{R}^2)$ and for the function $t\mapsto t\sup_{y_1^2+y_2^2\geqslant t^2}|\widehat{f}(y_1,y_2)|$ to be in $L_1(\mathbb{R}_{+})$ are indicated. The problem of the positivity of $\widehat{f}$ on $\mathbb{R}^2$ is shown to be completely reducible to the same problem for the function $\displaystyle f_1(x)=|x|f_0(x)+\int_{|x|}^\infty f_0(t)\,dt$ in $\mathbb{R}$.
Bibliography: 20 titles.

Keywords: Wiener Banach algebra, positive definiteness, Bernstein's theorem on completely monotone functions, Marcinkiewicz sums of a double Fourier series, Lebesgue points, Wiener approximation theorem.

UDC: 517.518.5+517.518.476

MSC: Primary 42B10; Secondary 42B35

Received: 18.12.2016 and 03.05.2017

DOI: 10.4213/sm8888


 English version:
Sbornik: Mathematics, 2018, 209:5, 759–779

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026