RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2017 Volume 208, Number 9, Pages 148–170 (Mi sm8880)

This article is cited in 7 papers

Minimal cubic surfaces over finite fields

S. Yu. Rybakov, A. S. Trepalin

Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Moscow

Abstract: Let $X$ be a minimal cubic surface over a finite field $\mathbb{F}_q$. The image $\Gamma$ of the Galois group $\operatorname{Gal}(\overline{\mathbb{F}}_q / \mathbb{F}_q)$ in the group $\operatorname{Aut}(\operatorname{Pic}(\overline{X}))$ is a cyclic subgroup of the Weyl group $W(E_6)$. There are $25$ conjugacy classes of cyclic subgroups in $W(E_6)$, and five of them correspond to minimal cubic surfaces. It is natural to ask which conjugacy classes come from minimal cubic surfaces over a given finite field. In this paper we give a partial answer to this question and present many explicit examples.
Bibliography: 11 titles.

Keywords: finite field, cubic surface, zeta function, del Pezzo surface.

UDC: 512.774.7

MSC: Primary 11G25; Secondary 14J20

Received: 12.12.2016 and 05.04.2017

DOI: 10.4213/sm8880


 English version:
Sbornik: Mathematics, 2017, 208:9, 1399–1419

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026