Abstract:
Let $X$ be a minimal cubic surface over a finite field $\mathbb{F}_q$. The image $\Gamma$ of the Galois group $\operatorname{Gal}(\overline{\mathbb{F}}_q / \mathbb{F}_q)$ in the group $\operatorname{Aut}(\operatorname{Pic}(\overline{X}))$ is a cyclic subgroup of the Weyl group $W(E_6)$. There are $25$ conjugacy classes of cyclic subgroups in $W(E_6)$, and five of them correspond to minimal cubic surfaces. It is natural to ask which conjugacy classes come from minimal cubic surfaces over a given finite field. In this paper we give a partial answer to this question and present many explicit examples.
Bibliography: 11 titles.
Keywords:finite field, cubic surface, zeta function, del Pezzo surface.