RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2018 Volume 209, Number 3, Pages 34–66 (Mi sm8878)

This article is cited in 7 papers

Ahlfors problem for polynomials

B. Eichingera, P. Yuditskiib

a Institute of Analysis, Johannes Kepler University Linz, Austria
b Section Dynamical Systems and Approximation Theory, Institute of Analysis, Johannes Kepler University Linz, Austria

Abstract: We present a conjecture that the asymptotics for Chebyshev polynomials in a complex domain can be given in terms of the reproducing kernels of a suitable Hilbert space of analytic functions in this domain. It is based on two classical results due to Garabedian and Widom. To support this conjecture we study the asymptotics for Ahlfors extremal polynomials in the complement to a system of intervals on $\mathbb{R}$, arcs on $\mathbb{T}$, and the asymptotics of the extremal entire functions for the continuous counterpart of this problem.
Bibliography: 35 titles.

Keywords: Chebyshev polynomial, analytic capacity, hyperelliptic Riemann surface, Abel-Jacobi inversion, complex Green's and Martin functions, reproducing kernel.

UDC: 517.535.2+517.54

MSC: Primary 30C10, 30E15, 41A50; Secondary 14K20, 30C85, 30F10, 46E22

Received: 09.12.2016 and 14.04.2017

DOI: 10.4213/sm8878


 English version:
Sbornik: Mathematics, 2018, 209:3, 320–351

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026