RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2017 Volume 208, Number 11, Pages 56–74 (Mi sm8864)

This article is cited in 17 papers

On functions of quasi-Toeplitz matrices

D. A. Binia, S. Masseib, B. Meinia

a Dipartimento di Matematica, Università di Pisa, Italy
b Scuola Normale Superiore, Pisa, Italy

Abstract: Let $a(z)=\sum_{i\in\mathbb Z}a_iz^i$ be a complex-valued function, defined for $|z|=1$, such that $\sum_{i=-\infty}^{+\infty} |ia_i|<\infty$. Consider the semi-infinite Toeplitz matrix $T(a)=(t_{i,j})_{i,j\in\mathbb Z^+}$ associated with the symbol $a(z)$ such that $t_{i,j}=a_{j-i}$. A quasi-Toeplitz matrix associated with the symbol $a(z)$ is a matrix of the form $A=T(a)+E$ where $E=(e_{i,j})$, $\sum_{i,j\in\mathbb Z^+}|e_{i,j}|<\infty$, and is called a $\mathrm{QT}$-matrix. Given a function $f(x)$ and a $\mathrm{QT}$-matrix $M$, we provide conditions under which $f(M)$ is well defined and is a $\mathrm{QT}$-matrix. Moreover, we introduce a parametrization of $\mathrm{QT}$-matrices and algorithms for the computation of $f(M)$. We treat the case where $f(x)$ is given in terms of power series and the case where $f(x)$ is defined in terms of a Cauchy integral. This analysis is also applied to finite matrices which can be written as the sum of a Toeplitz matrix and a low rank correction.
Bibliography: 27 titles.

Keywords: matrix functions, Toeplitz matrices, infinite matrices.

UDC: 517.548.5+517.984.51+512.643.8

MSC: Primary 15B05, 65F60; Secondary 47A60, 47B35

Received: 19.11.2016 and 04.03.2017

DOI: 10.4213/sm8864


 English version:
Sbornik: Mathematics, 2017, 208:11, 1628–1645

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026