RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2018 Volume 209, Number 4, Pages 3–25 (Mi sm8859)

This article is cited in 3 papers

Affine Walsh-type systems of functions in symmetric spaces

S. V. Astashkina, P. A. Terekhinb

a Samara National Research University
b Saratov State University

Abstract: Affine Walsh-type systems of functions in symmetric spaces are investigated. It is shown that such a system can only be an unconditional basis in $L^2$. On the other hand the Besselian affine system generated by a function $f$ in the Zygmund-Orlicz space $\operatorname{Exp}L^p$, $p>0$, is an $\mathrm{RUC}$-system in a symmetric space $X$ if and only if $(\operatorname{Exp}L^q)^0\subset X\subset L^2$, where $(\operatorname{Exp}L^q)^0$ is the closure of $L^\infty$ in $\operatorname{Exp}L^q$ and $q=2p/(p+2)$.
Bibliography: 20 titles.

Keywords: Walsh functions, Rademacher functions, Haar functions, symmetric space, Zygmund-Orlicz space.

UDC: 517.982.27+517.518.3

MSC: 42C40, 46B19, 46E30

Received: 30.10.2016 and 03.04.2017

DOI: 10.4213/sm8859


 English version:
Sbornik: Mathematics, 2018, 209:4, 469–490

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026