RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2024 Volume 215, Number 12, Pages 89–147 (Mi sm8815)

This article is cited in 3 papers

Strong asymptotics of the best rational approximation to the exponential function on a bounded interval

A. P. Magnus, J. Meinguet

Institut de Mathématique Pure et Appliquée, Université Catholique de Louvain, Louvain-la-Neuve, Belgium

Abstract: We apply recent findings of complex approximation theory to best rational approximation of degree $n$ to the function $\exp(-(n+\nu)x)$ on a finite interval $[0,c]$. We show that the error norm behaves like the $n$th power of the main approximation rate times the $\nu$th power of a secondary approximation rate. The computation of the first rate is a consequence of works of Gonchar, Rakhmanov and Stahl done in the 1980s; the complete asymptotic description was achieved by Aptekarev in the first years of the 21st century. The solution is given in terms of elliptic integrals of the third kind.
Bibliography: 92 titles.

Keywords: rational approximation, exponential function, complex potential.

MSC: 30E10, 30E15, 31A15, 33E05, 33F05, 41A20, 41A25, 41A80

Received: 12.09.2016 and 21.08.2024

DOI: 10.4213/sm8815


 English version:
Sbornik: Mathematics, 2024, 215:12, 1666–1719

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026