RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 1994 Volume 185, Number 2, Pages 107–114 (Mi sm881)

This article is cited in 5 papers

On removable singular sets for quasilinear elliptic equations

M. V. Tuvaev


Abstract: For equations of the form
$$ \operatorname{div}(|\nabla u|^{p-2}\nabla u) =\alpha|u|^{\beta_1}|\nabla u|^{\beta_2}\operatorname{sgn}u,\qquad x\in\Omega\subset\mathbb{R}^n, $$
in the case $1<p<n$, $\beta_1>0$, $0\leqslant \beta_2\leqslant p$, $\beta_1+\beta_2>p-1$, $\alpha>0$, sufficient conditions are given for removability of singular sets of dimension $\alpha$. These conditions are nearly necessary, and are given by the formula
$$ 0\leqslant \alpha <n-\frac{p\beta_1+\beta_2}{\beta_1+\beta_2+1-p}. $$


UDC: 517.9

MSC: 35J60

Received: 09.03.1992 and 25.01.1993


 English version:
Russian Academy of Sciences. Sbornik. Mathematics, 1995, 81:1, 229–234

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026