RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2017 Volume 208, Number 3, Pages 96–110 (Mi sm8727)

This article is cited in 9 papers

Makarov's principle for the Bloch unit ball

O. V. Ivriia, I. R. Kayumovb

a California Institute of Technology, Pasadena, CA, USA
b Kazan (Volga Region) Federal University

Abstract: Makarov's principle relates three characteristics of Bloch functions that resemble the variance of a Gaussian: asymptotic variance, the constant in Makarov's law of iterated logarithm and the second derivative of the integral means spectrum at the origin. While these quantities need not be equal in general, we show that the universal bounds agree if we take the supremum over the Bloch unit ball. For the supremum (of either of these quantities), we give the estimate $\Sigma^2_{\mathscr B} < \min(0.9, \Sigma^2)$, where $\Sigma^2$ is the analogous quantity associated to the unit ball in the $L^\infty$ norm on the Bloch space. This improves on the upper bound in Pommerenke's estimate $0.685^2 < \Sigma^2_{\mathscr B} \le 1$.
Bibliography: 23 titles.

Keywords: Bloch space, law of the iterated logarithm, integral means spectrum, Bergman projection.

UDC: 517.546.12+517.547.5

MSC: 30H30

Received: 01.05.2016 and 01.09.2016

DOI: 10.4213/sm8727


 English version:
Sbornik: Mathematics, 2017, 208:3, 399–412

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026