RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2016 Volume 207, Number 11, Pages 127–152 (Mi sm8682)

This article is cited in 3 papers

Projective toric polynomial generators in the unitary cobordism ring

G. D. Solomadina, Yu. M. Ustinovskiyb

a Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
b Department of Mathematics, Princeton University, USA

Abstract: According to Milnor and Novikov's classical result, the unitary cobordism ring is isomorphic to a graded polynomial ring with countably many generators: $\Omega^U_*\simeq \mathbb{Z}[a_1,a_2,\dots]$, $\deg(a_i)=2i$. In this paper we solve the well-known problem of constructing geometric representatives for the $a_i$ among smooth projective toric varieties, $a_n=[X^{n}]$, $\dim_\mathbb{C} X^{n}=n$. Our proof uses a family of equivariant modifications (birational isomorphisms) $B_k(X)\to X$ of an arbitrary complex manifold $X$ of complex dimension $n$ ($n\geqslant 2$, $k=0,\dots,n-2$). The key fact is that the change of the Milnor number under these modifications depends only on the dimension $n$ and the number $k$ and does not depend on the manifold $X$ itself.
Bibliography: 22 titles.

Keywords: unitary cobordism, toric varieties, blow-ups, convex polytopes.

UDC: 515.165

MSC: Primary 14M25; Secondary 55N22, 57R77, 52B20

Received: 25.02.2016 and 01.07.2016

DOI: 10.4213/sm8682


 English version:
Sbornik: Mathematics, 2016, 207:11, 1601–1624

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026