RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2017 Volume 208, Number 3, Pages 4–27 (Mi sm8632)

This article is cited in 15 papers

Convergence of ray sequences of Frobenius-Padé approximants

A. I. Aptekareva, A. I. Bogolyubskiib, M. Yattselevc

a Federal Research Centre Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, Moscow
b Russian National Research Medical University named after N. I. Pirogov, Moscow
c Department of Mathematical Sciences, Indiana University – Purdue University Indianapolis, Indianapolis, IN, USA

Abstract: Let $\widehat\sigma$ be a Cauchy transform of a possibly complex-valued Borel measure $\sigma$ and $\{p_n\}$ a system of orthonormal polynomials with respect to a measure $\mu$, where $\operatorname{supp}(\mu)\cap\operatorname{supp}(\sigma)=\varnothing$. An $(m,n)$th Frobenius-Padé approximant to $\widehat\sigma$ is a rational function $P/Q$, $\deg(P)\leq m$, $\deg(Q)\leq n$, such that the first $m+n+1$ Fourier coefficients of the remainder function $Q\widehat\sigma-P$ vanish when the form is developed into a series with respect to the polynomials $p_n$. We investigate the convergence of the Frobenius-Padé approximants to $\widehat\sigma$ along ray sequences $n/(n+m+1)\to c>0$, $n-1\leq m$, when $\mu$ and $\sigma$ are supported on intervals of the real line and their Radon-Nikodym derivatives with respect to the arcsine distribution of the corresponding interval are holomorphic functions.
Bibliography: 30 titles.

Keywords: Frobenius-Padé approximants, linear Padé-Chebyshev approximants, Padé approximants of orthogonal expansions, orthogonality, Markov-type functions, Riemann-Hilbert matrix problem.

UDC: 517.53

MSC: 41A20, 41A21

Received: 09.11.2015 and 26.09.2016

DOI: 10.4213/sm8632


 English version:
Sbornik: Mathematics, 2017, 208:3, 313–334

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026