Abstract:
Methods are given for the approximate calculation of a branch of a resonance oscillation when it bifurcates from a stationary point and for optimizing this branch with respect to the nonsymmetry coefficient, which is defined as the ratio between the largest and the smallest values of the amplitude. It is shown that the optimal values of the base amplitudes are the coefficients of the corresponding Fejér series. The largest value of the nonsymmetry coefficient is calculated exactly.
Bibliography: 18 titles.