RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2016 Volume 207, Number 3, Pages 93–110 (Mi sm8512)

This article is cited in 10 papers

On the limit distributions of the degrees of vertices in configuration graphs with a bounded number of edges

Yu. L. Pavlov, E. V. Khvorostyanskaya

Institute of Applied Mathematical Research, Karelian Research Centre, RAS, Petrozavodsk

Abstract: A model of a configuration graph on $N$ vertices is considered in which the degrees of the vertices are distributed identically and independently according to the law $\mathbf P\{\xi=k\}=k^{-\tau}-(k+1)^{-\tau}$, $k=1,2,\dots$, $\tau>0$, and the number of edges is no greater than $n$. Limit theorems for the number of vertices of a particular degree and for the maximum vertex degree as $N,n\to\infty$ are established.
Bibliography: 18 titles.

Keywords: configuration graph, limit distribution, the number of vertices of a particular degree, the maximum vertex degree.

UDC: 519.175.4

MSC: 05C80

Received: 18.03.2015 and 29.06.2015

DOI: 10.4213/sm8512


 English version:
Sbornik: Mathematics, 2016, 207:3, 400–417

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026