RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2015 Volume 206, Number 8, Pages 99–126 (Mi sm8482)

This article is cited in 17 papers

Existence of solutions of anisotropic elliptic equations with nonpolynomial nonlinearities in unbounded domains

L. M. Kozhevnikovaab, A. A. Khadzhic

a Sterlitamak branch of Bashkir State University
b Elabuga Branch of Kazan State University
c Tyumen State University

Abstract: The paper is concerned with the solvability of the Dirichlet problem for a certain class of anisotropic elliptic second-order equations in divergence form with low-order terms and nonpolynomial nonlinearities
$$ \sum_{\alpha=1}^{n}(a_{\alpha}(x,u,\nabla u))_{x_{\alpha}}-a_0(x,u,\nabla u)=0, \qquad x \in \Omega. $$
The Carathéodory functions $a_{\alpha}(x,s_0,s)$, $\alpha=0,1,\dots,n$, are assumed to satisfy a joint monotonicity condition in the arguments $s_0\in\mathbb{R}$, $s\in\mathbb{R}_n$. Constraints on their growth in $s_0,s$ are formulated in terms of a special class of convex functions. The solvability of the Dirichlet problem in unbounded domains $\Omega\subset \mathbb{R}_n$, $n\geqslant 2$, is investigated. An existence theorem is proved without making any assumptions on the behaviour of the solutions and their growth as $|x|\to \infty$.
Bibliography: 26 titles.

Keywords: anisotropic elliptic equation, nonpolynomial nonlinearities, Orlicz-Sobolev space, existence of a solution, unbounded domain.

UDC: 517.956.25

MSC: 35J47, 35J60

Received: 26.01.2015 and 19.06.2015

DOI: 10.4213/sm8482


 English version:
Sbornik: Mathematics, 2015, 206:8, 1123–1149

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026