RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2016 Volume 207, Number 2, Pages 3–44 (Mi sm8463)

This article is cited in 8 papers

On the exponent of $G$-spaces and isovariant extensors

S. M. Ageev

Belarusian State University, Minsk, Belarus

Abstract: The equivariant version of the Curtis-Schori-West theorem is investigated. It is proved that for a nondegenerate Peano $G$-continuum $\mathbb X$ with an action of the compact abelian Lie group $G$, the exponent $\exp\mathbb X$ is equimorphic to the maximal equivariant Hilbert cube if and only if the free part $\mathbb X_{\mathrm{free}}$ is dense in $\mathbb X$. We also show that the latter is sufficient for the equimorphy of $\exp\mathbb X$ and $\mathbb Q$ in the case of an action of an arbitrary compact Lie group $G$. The key to the proof of these results lies in the theory of the universal $G$-space (in the sense of Palais).
Bibliography: 28 titles.

Keywords: isovariant absolute extensor, Palais universal $G$-space, classifying $G$-space, exponent of $G$-space, equivariant Hilbert cube.

UDC: 515.124.62+515.122.4

MSC: 54C15, 54C20, 54C55, 54H15, 55R91

Received: 29.12.2014 and 20.07.2015

DOI: 10.4213/sm8463


 English version:
Sbornik: Mathematics, 2016, 207:2, 155–190

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026