RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2004 Volume 195, Number 9, Pages 57–74 (Mi sm845)

This article is cited in 17 papers

Precise solutions of the one-dimensional Monge–Kantorovich problem

A. Yu. Plakhov

University of Aveiro

Abstract: The Monge–Kantorovich problem on finding a measure realizing the transportation of mass from $\mathbb R$ to $\mathbb R$ at minimum cost is considered. The initial and resulting distributions of mass are assumed to be the same and the cost of the transportation of the unit mass from a point $x$ to $y$ is expressed by an odd function $f(x+y)$ that is strictly concave on $\mathbb R_+$. It is shown that under certain assumptions about the distribution of the mass the optimal measure belongs to a certain family of measures depending on countably many parameters. This family is explicitly described: it depends only on the distribution of the mass, but not on $f$. Under an additional constraint on the distribution of the mass the number of the parameters is finite and the problem reduces to the minimization of a function of several variables. Examples of various distributions of the mass are considered.

UDC: 517.98

MSC: Primary 49Q20; Secondary 46N10

Received: 11.11.2003

DOI: 10.4213/sm845


 English version:
Sbornik: Mathematics, 2004, 195:9, 1291–1307

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026