RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2014 Volume 205, Number 9, Pages 145–160 (Mi sm8339)

This article is cited in 1 paper

Bi-invariant functions on the group of transformations leaving a measure quasi-invariant

Yu. A. Neretinabc

a Institute for Theoretical and Experimental Physics (Russian Federation State Scientific Center), Moscow
b M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
c University of Vienna

Abstract: Let $\mathrm{Gms}$ be the group of transformations of a Lebesgue space leaving the measure quasi-invariant. Let $\mathrm{Ams}$ be a subgroup of it consisting of transformations preserving the measure. We describe canonical forms of double cosets of $\mathrm{Gms}$ by the subgroup $\mathrm{Ams}$ and show that all continuous $\mathrm{Ams}$-bi-invariant functions on $\mathrm{Gms}$ are functionals of the distribution of a Radon-Nikodym derivative.
Bibliography: 14 titles.

Keywords: Lebesgue space, transformations of measure spaces, Polish group, double cosets.

UDC: 517.986.6+517.987.1+512.546

MSC: Primary 22E66, 28D99, 22F10; Secondary 28E99

Received: 04.02.2014 and 08.06.2014

DOI: 10.4213/sm8339


 English version:
Sbornik: Mathematics, 2014, 205:9, 1357–1372

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026