RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2015 Volume 206, Number 2, Pages 149–174 (Mi sm8307)

This article is cited in 1 paper

Bishop-Runge approximations and inversion of a Riemann-Klein theorem

V. Michela, G. M. Henkinba

a Université Pierre & Marie Curie, Paris VI
b Central Economics and Mathematics Institute, RAS, Moscow

Abstract: In this paper we give results about projective embeddings of Riemann surfaces, smooth or nodal, which we apply to the inverse Dirichlet-to-Neumann problem and to the inversion of a Riemann-Klein theorem. To produce useful embeddings, we adapt a technique of Bishop in the open bordered case and use a Runge-type harmonic approximation theorem in the compact case.
Bibliography: 36 titles.

Keywords: Riemann surface, projective embedding. Bishop approximation, Dirichlet-to-Neumann problem, Riemann-Klein theorem.

UDC: 517.545+517.577+517.956.27

MSC: 32D15, 32C25, 32V15, 35R30, 58J32

Received: 22.11.2013 and 09.07.2014

DOI: 10.4213/sm8307


 English version:
Sbornik: Mathematics, 2015, 206:2, 311–332

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026