RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2014 Volume 205, Number 7, Pages 3–24 (Mi sm8268)

This article is cited in 10 papers

$N^\pm$-integrals and boundary values of Cauchy-type integrals of finite measures

R. A. Aliyev

Baku State University

Abstract: Let $\Gamma $ be a simple closed Lyapunov contour with finite complex measure $\nu$, and let $G^+ $ be the bounded and $G^- $ the unbounded domains with boundary $\Gamma$. Using new notions (so-called $N$-integration and $N^+$- and $N^-$-integrals), we prove that the Cauchy-type integrals $F^+(z)$, $z\in G^+$, and $F^-(z)$, $z\in G^-$, of $\nu $ are Cauchy $N^+$- and $N^-$-integrals, respectively. In the proof of the corresponding results, the additivity property and the validity of the change-of-variable formula for the $N^+$- and $N^-$-integrals play an essential role.
Bibliography: 21 titles.

Keywords: finite complex Borel measure, Cauchy-type integral, nontangential boundary values, Cauchy integral, $Q$-integral, $Q'$-integral, $N$-integration.

UDC: 517.518.234+517.547.73

MSC: Primary 28A25; Secondary 26A42, 42B25

Received: 01.07.2013 and 06.03.2014

DOI: 10.4213/sm8268


 English version:
Sbornik: Mathematics, 2014, 205:7, 913–935

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026