RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2014 Volume 205, Number 9, Pages 65–96 (Mi sm8240)

This article is cited in 4 papers

Definition of the metric on the space $\mathrm{clos}_{\varnothing}(X)$ of closed subsets of a metric space $X$ and properties of mappings with values in $\mathrm{clos}_{\varnothing}(\mathbb{R}}^n)$

E. S. Zhukovskii, E. A. Panasenko

Institute of Mathematics, Physics and Information Science, Tambov State University

Abstract: The paper is concerned with the extension of tests for superpositional measurability, Filippov's implicit function lemma and the Scorza Dragoni property to set-valued (and, as a corollary, to single-valued) mappings that fail to satisfy the Carathéodory conditions (the upper Carathéodory conditions) and are not continuous (upper semicontinuous) in the phase variable. To obtain the corresponding results the space $\mathrm{clos}_{\varnothing}(X)$ of all closed subsets (including the empty set) of an arbitrary metric space $X$ is introduced; a metric on $\mathrm{clos}_{\varnothing}(X)$ is proposed; the space $\mathrm{clos}_{\varnothing}(X)$ is shown to be complete whenever the original space $X$ is; a criterion for convergence of a sequence is put forward; mappings with values in $\mathrm{clos}_\varnothing(X)$ are studied. Some results on set-valued mappings satisfying the Carathéodory conditions and having compact values in $\mathbb R^n$ are shown to hold for mappings with values in $\mathrm{clos}_\varnothing(\mathbb R^n)$, measurable in the first argument, and continuous in the proposed metric in the second argument.
Bibliography: 22 titles.

Keywords: superpositional measurability, Filippov's implicit function lemma, Scorza Dragoni property, the space of closed subsets of a metric space, set-valued mapping.

UDC: 515.124+515.126.83

MSC: 54C60, 54C65, 54E35

Received: 16.04.2013 and 24.03.2014

DOI: 10.4213/sm8240


 English version:
Sbornik: Mathematics, 2014, 205:9, 1279–1309

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026