RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2012 Volume 203, Number 12, Pages 57–80 (Mi sm8176)

This article is cited in 2 papers

Uniform approximation of partial sums of a Dirichlet series by shorter sums and $\Phi$-widths

J. Bourgaina, B. S. Kashinb

a Institute for Advanced Study, Princeton, NJ
b Steklov Mathematical Institute of the Russian Academy of Sciences

Abstract: It is shown that each Dirichlet polynomial $P$ of degree $N$ which is bounded in a certain natural Euclidean norm, admits a nontrivial uniform approximation on the corresponding interval on the real axis by a Dirichlet polynomial with spectrum containing significantly fewer than $N$ elements. Moreover, this spectrum is independent of $P$.
Bibliography: 19 titles.

Keywords: Dirichlet series, widths, $\varepsilon$-entropy.

UDC: 517.537.72+511.332

MSC: 30B50, 41A46

Received: 27.08.2012

DOI: 10.4213/sm8176


 English version:
Sbornik: Mathematics, 2012, 203:12, 1736–1760

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026