RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2013 Volume 204, Number 9, Pages 99–114 (Mi sm8173)

This article is cited in 5 papers

On spectral synthesis on zero-dimensional Abelian groups

S. S. Platonov

Petrozavodsk State University

Abstract: Let $G$ be a zero-dimensional locally compact Abelian group all of whose elements are compact, and let $C(G)$ be the space of all complex-valued continuous functions on $G$. A closed linear subspace $\mathscr H\subseteq C(G)$ is said to be an invariant subspace if it is invariant with respect to the translations $\tau_y\colon f(x)\mapsto f(x+y)$, $y\in G$. In the paper, it is proved that any invariant subspace $\mathscr H$ admits spectral synthesis, that is, $\mathscr H$ coincides with the closed linear span of the characters of $G$ belonging to $\mathscr H$.
Bibliography: 25 titles.

Keywords: spectral synthesis, locally compact Abelian group, zero-dimensional group, invariant subspace, Fourier transform on groups.

UDC: 517.986.62

MSC: Primary 43A45; Secondary 43A40

Received: 01.09.2012 and 13.03.2013

DOI: 10.4213/sm8173


 English version:
Sbornik: Mathematics, 2013, 204:9, 1332–1346

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026