RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 1995 Volume 186, Number 10, Pages 103–140 (Mi sm81)

This article is cited in 4 papers

Periodic points of denumerable topological Markov chains

S. V. Savchenko

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: This paper considers the analytic properties of the Artin–Mazur–Ruelle and Ruelle–Smale zeta functions for denumerable topological Markov chains (abbreviated to TMC) and locally constant functions. The convergence of discrete invariant measures is investigated. An analogue of Chebyshev's asymptotic law for the distribution of prime numbers for periodic trajectories of a special flow constructed with respect to a TMC and a positive locally constant function is obtained.

UDC: 519.217+519.53

MSC: Primary 58F20, 60J10; Secondary 11N05, 28D20

Received: 18.07.1994


 English version:
Sbornik: Mathematics, 1995, 186:10, 1493–1529

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026