RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2013 Volume 204, Number 8, Pages 51–72 (Mi sm7925)

This article is cited in 20 papers

Subdominant pseudoultrametric on graphs

A. A. Dovgoshey, E. A. Petrov

Institute of Applied Mathematics and Mechanics, Ukraine National Academy of Sciences, Donetsk

Abstract: Let $(G,w)$ be a weighted graph. We find necessary and sufficient conditions under which the weight $w\colon E(G)\to \mathbb{R}^+$ can be extended to a pseudoultrametric on $V(G)$, and establish a criterion for the uniqueness of such an extension. We demonstrate that $(G,w)$ is a complete $k$-partite graph, for $k\geqslant 2$, if and only if for any weight that can be extended to a pseudoultrametric, among all such extensions one can find the least pseudoultrametric consistent with $w$. We give a structural characterization of graphs for which the subdominant pseudoultrametric is an ultrametric for any strictly positive weight that can be extended to a pseudoultrametric.
Bibliography: 14 titles.

Keywords: weighted graph, infinite graph, ultrametric space, shortest path metric, complete $k$-partite graph.

UDC: 519.173+515.124

MSC: 05C78, 54E35

Received: 19.08.2011 and 27.02.2013

DOI: 10.4213/sm7925


 English version:
Sbornik: Mathematics, 2013, 204:8, 1131–1151

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026