RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2012 Volume 203, Number 11, Pages 41–60 (Mi sm7915)

The Minkowski sum of a zonotope and the Voronoi polytope of the root lattice $E_7$

V. P. Grishukhin

Central Economics and Mathematics Institute, RAS, Moscow

Abstract: We show that the Minkowski sum $P_{\mathrm V}(E_7)+Z(U)$ of the Voronoi polytope $P_{\mathrm V}(E_7)$ of the root lattice $E_7$ and the zonotope $Z(U)$ is a 7-dimensional parallelohedron if and only if the set $U$ consists of minimal vectors of the dual lattice $E_7^*$ up to scalar multiplication, and $U$ does not contain forbidden sets. The minimal vectors of $E_7$ are the vectors $r$ of the classical root system $\mathbf E_7$. If the $r^2$-norm of the roots is set equal to 2, then the scalar products of minimal vectors from the dual lattice only take the values $\pm1/2$. A set of minimal vectors is referred to as forbidden if it consists of six vectors, and the directions of some of these vectors can be changed so as to obtain a set of six vectors with all the pairwise scalar products equal to $1/2$.
Bibliography: 11 titles.

Keywords: Minkowski sum, Voronoi polytope, zonotope, unimodular set, matroid.

UDC: 511.9

MSC: 52B12

Received: 21.07.2011 and 06.10.2011

DOI: 10.4213/sm7915


 English version:
Sbornik: Mathematics, 2012, 203:11, 1571–1588

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026