RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2013 Volume 204, Number 6, Pages 135–160 (Mi sm7875)

This article is cited in 6 papers

Littlewood polynomials and applications of them in the spectral theory of dynamical systems

A. A. Prikhod'ko

M. V. Lomonosov Moscow State University

Abstract: In this paper we establish the existence of character sums on the real line $\mathbb R$ that are $\varepsilon$-flat on any given compact subset $K\subset \mathbb R \setminus \{0\}$ with respect to the metric in the space $L^1(K)$. A consequence of this analytic result is an affirmative answer to Banach's conjecture on the existence of a dynamical system with a simple Lebesgue spectrum in the class of actions of the group $\mathbb R$.
Bibliography: 25 titles.

Keywords: Littlewood polynomials, van der Corput's method, Riesz products, rank-one flows, Banach's problem.

UDC: 517.538

MSC: Primary 11L40, 37A10; Secondary 26D05, 28D05, 42A05

Received: 07.04.2011 and 01.04.2013

DOI: 10.4213/sm7875


 English version:
Sbornik: Mathematics, 2013, 204:6, 910–935

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026