RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2012 Volume 203, Number 6, Pages 101–130 (Mi sm7846)

This article is cited in 1 paper

Invariant subspaces in some function spaces on the light cone in $\mathbb R^3$

S. S. Platonov

Petrozavodsk State University, Faculty of Mathematics

Abstract: For certain topological vector spaces of functions on the light cone $X$ in $\mathbb R^3$ we obtain a complete description of all the closed linear subspaces which are invariant with respect to the natural quasiregular representation of the group $\mathbb R\oplus\operatorname{SO}_0(1,2)$. In particular, we give a description of irreducible and indecomposable invariant subspaces. Among the function spaces we consider we include, in particular, the spaces $C(X)$ and $\mathscr E(X)$ of continuous and infinitely differentiable functions on $X$ and also function spaces formed by functions with exponential growth on $X$.
Bibliography: 32 titles.

Keywords: invariant subspaces, quasiregular representation, light cone, homogeneous spaces, harmonic analysis.

UDC: 517.986.6

MSC: Primary 43A45; Secondary 22E30, 43A85

Received: 18.01.2011

DOI: 10.4213/sm7846


 English version:
Sbornik: Mathematics, 2012, 203:6, 864–892

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026