RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2012 Volume 203, Number 11, Pages 105–120 (Mi sm7833)

This article is cited in 5 papers

Universality of composite functions of periodic zeta functions

A. Laurinčikas

Department of Mathematical Computer Science, Vilnius University

Abstract: In the paper, we prove the universality, in the sense of Voronin, for some classes of composite functions $F(\zeta(s;\mathfrak a))$, where the function $\zeta(s;\mathfrak a)$ is defined by a Dirichlet series with periodic multiplicative coefficients. We also study the universality of functions of the form $F(\zeta(s;\mathfrak a_1),\dots,\zeta(s;\mathfrak a_r))$. For example, it follows from general theorems that every linear combination of derivatives of the function $\zeta(s;\mathfrak a)$ and every linear combination of the functions $\zeta(s;\mathfrak a_1),\dots,\zeta(s;\mathfrak a_r)$ are universal.
Bibliography: 18 titles.

Keywords: support of a measure, periodic zeta function, limit theorem, the space of analytic functions, universality.

UDC: 511.331

MSC: 11M41, 30K10

Received: 18.12.2010

DOI: 10.4213/sm7833


 English version:
Sbornik: Mathematics, 2012, 203:11, 1631–1646

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026