RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2011 Volume 202, Number 11, Pages 97–102 (Mi sm7811)

This article is cited in 13 papers

Powers of sets in free groups

S. R. Safin

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: We prove that $|A^n|\geqslant c_n\cdot|A|^{[(n+1)/2]}$ for any finite subset $A$ of a free group if $A$ contains at least two noncommuting elements, where the $c_n>0$ are constants not depending on $A$. Simple examples show that the order of these estimates is best possible for each $n>0$.
Bibliography: 5 titles.

Keywords: free group, relations in a free group, subsets of a free group.

UDC: 512.544

MSC: 20E05

Received: 31.10.2010

DOI: 10.4213/sm7811


 English version:
Sbornik: Mathematics, 2011, 202:11, 1661–1666

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026