Abstract:
It is proved that if a function $\varphi(t)$ of variable $t>0$ belongs to the class
$C^{3,\alpha}$ and satisfies for sufficiently small positive $\varepsilon$
($\varepsilon<10^{-4}$) the conditions
\begin{gather*}
1-\varepsilon\leqslant\varphi(t)\leqslant1+\varepsilon,\qquad t>0,
\\
\begin{alignedat}{2}
|\varphi'(t)|&\leqslant\varepsilon\frac{\varphi(t)}t\,,&\qquad
t&\geqslant 2\sqrt{1-\varepsilon},
\\
|\varphi''(t)|&\leqslant\varepsilon\frac{\varphi(t)}{t^2}\,,&\qquad
t&\geqslant2\sqrt{1-\varepsilon},
\\
|\varphi'''(t)|&\leqslant\varepsilon\frac{\varphi(t)}{t^3}\,,&\qquad
t&\geqslant2\sqrt{1-\varepsilon},
\end{alignedat}
\end{gather*}
then every complete solution $z(x,y)$ of the equation $z_{xx}z_{yy}-z_{xy}^2=\varphi(z_{xx}+z_{yy})$
is a quadratic polynomial.