RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2010 Volume 201, Number 9, Pages 27–60 (Mi sm7715)

This article is cited in 8 papers

Bifurcation diagram and the discriminant of a spectral curve of integrable systems on Lie algebras

A. Yu. Konyaev

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: A bifurcation diagram is a stratified (in general, nonclosed) set and is one of the efficient tools of studying the topology of the Liouville foliation. In the framework of the present paper, the coincidence of the closure of a bifurcation diagram $\overline\Sigma$ of the moment map defined by functions obtained by the method of argument shift with the closure of the discriminant $\overline D_z$ of a spectral curve is proved for the Lie algebras $\operatorname{sl}(n+1)$, $\operatorname{sp}(2n)$, $\operatorname{so}(2n+1)$, and $\operatorname{g}_2$. Moreover, it is proved that these sets are distinct for the Lie algebra $\operatorname{so}(2n)$.
Bibliography: 22 titles.

Keywords: method of argument shift, Lie algebra, bifurcation diagram, spectral curve.

UDC: 514.747.2

MSC: Primary 17B20; Secondary 17B22, 17B25, 17B80, 37J35

Received: 18.03.2010 and 16.06.2010

DOI: 10.4213/sm7715


 English version:
Sbornik: Mathematics, 2010, 201:9, 1273–1305

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026