RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2011 Volume 202, Number 7, Pages 135–146 (Mi sm7711)

This article is cited in 20 papers

Curvature and Tachibana numbers

S. E. Stepanov

Finance Academy under the Government of the Russian Federation

Abstract: The aim of this paper is to define the $r$th Tachibana number $t_r$ of an $n$-dimensional compact oriented Riemannian manifold as the dimension of the space of conformally Killing $r$-forms, for $r=1,2,\dots,n-1$. We also describe properties of these numbers, by analogy with properties of the Betti numbers $b_r$ of a compact oriented Riemannian manifold.
Bibliography: 25 titles.

Keywords: compact Riemannian manifold, differential forms, elliptic operator, scalar invariants.

UDC: 514.762.212

MSC: 53C21, 58A10

Received: 13.03.2010 and 12.12.2010

DOI: 10.4213/sm7711


 English version:
Sbornik: Mathematics, 2011, 202:7, 1059–1069

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026