RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2011 Volume 202, Number 8, Pages 95–116 (Mi sm7699)

This article is cited in 1 paper

The order of a homotopy invariant in the stable case

S. S. Podkorytov

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences

Abstract: Let $X$, $Y$ be cell complexes, let $U$ be an Abelian group, and let $f\colon[X,Y]\to U$ be a homotopy invariant. By definition, the invariant $f$ has order at most $r$ if the characteristic function of the $r$th Cartesian power of the graph of a continuous map $a\colon X\to Y$ determines the value $f([a])$ $\mathbb{Z}$-linearly. It is proved that, in the stable case (that is, when $\operatorname{dim} X<2n-1$, and $Y$ is $(n-1)$-connected for some natural number $n$), for a finite cell complex $X$ the order of the invariant $f$ is equal to its degree with respect to the Curtis filtration of the group $[X,Y]$.
Bibliography: 9 titles.

Keywords: invariants of finite order, stable homotopy, Curtis filtration.

UDC: 515.142.424

MSC: 55Q05, 55P42

Received: 25.02.2010 and 11.01.2011

DOI: 10.4213/sm7699


 English version:
Sbornik: Mathematics, 2011, 202:8, 1183–1206

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026