RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2013 Volume 204, Number 4, Pages 3–24 (Mi sm7675)

This article is cited in 2 papers

Vectors of a given Diophantine type. II

R. K. Akhunzhanov

Astrakhan State University

Abstract: We prove the existence of a family of vectors with continuum many elements $\mathbf v\in\mathbb{R}^s$ admitting infinitely many simultaneous $(\varphi(p)/p^{1/s})(1+B\cdot\varphi^{1+1/s}(p))$-approximations and admitting no simultaneous $(\varphi(p)/p^{1/s})(1-B\cdot\varphi^{1+1/s}(p))$-approximation.
We prove that for $0<t\le T$ the closed interval $[t,t(1+16B\cdot t^{1+1/s})]$ contains an element of the $s$-dimensional Lagrange spectrum. Here $A$, $B$ and $T$ stand for some positive constants depending on the dimension $s$ only and $\varphi$ is a positive nonincreasing function of positive integer argument such that $\varphi(1)\le A$.
Bibliography: 5 titles.

Keywords: simultaneous Diophantine approximations, Lagrange spectrum, Euclidean space, simultaneous $\psi$-approximation.

UDC: 511.36+511.9

MSC: Primary 11J06; Secondary 11J13, 41A38

Received: 24.12.2009 and 29.08.2012

DOI: 10.4213/sm7675


 English version:
Sbornik: Mathematics, 2013, 204:4, 463–484

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026