RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2003 Volume 194, Number 8, Pages 113–138 (Mi sm763)

Invariant hyperkähler structures on the cotangent bundles of Hermitian symmetric spaces

I. V. Mykytyuk

Lviv Polytechnic National University

Abstract: Let $G/K$ be an irreducible Hermitian symmetric space of compact type with standard homogeneous complex structure. Then the real symplectic manifold $(T^*(G/K),\Omega)$ has the natural complex structure $J^-$. All $G$-invariant Kéhler structures $(J,\Omega)$ on $G$-invariant subdomains of $T^*(G/K)$ anticommuting with $J^-$ are constructed. Each hypercomplex structure of this kind, equipped with a suitable metric, defines a hyperkéhler structure. As an application, a new proof of the theorem of Harish-Chandra and Moore for Hermitian symmetric spaces is obtained.

UDC: 514.765.1+512.813.4

MSC: 32Q15, 37J15

Received: 11.03.2003

DOI: 10.4213/sm763


 English version:
Sbornik: Mathematics, 2003, 194:8, 1225–1250

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026