RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2010 Volume 201, Number 9, Pages 3–26 (Mi sm7602)

This article is cited in 11 papers

Stabilization of solutions of quasilinear second order parabolic equations in domains with non-compact boundaries

R. Kh. Karimova, L. M. Kozhevnikovab

a Institute of Applied Research
b Sterlitamak State Pedagogical Academy

Abstract: The first mixed problem with homogeneous Dirichlet boundary condition and initial function with compact support is considered for quasilinear second order parabolic equations in a cylindrical domain $D=(0,\infty)\times\Omega$. Upper bounds are obtained, which give the rate of decay of the solutions as $t\to\infty$ as a function of the geometry of the unbounded domain $\Omega\subset \mathbb R_n$, $n\geqslant 2$.
Bibliography: 18 titles.

Keywords: first mixed problem, quasilinear parabolic equations, unbounded domain, stabilization of the solution, geometric characteristic.

UDC: 517.956.4

MSC: 35S15, 35B40

Received: 16.07.2009 and 08.04.2010

DOI: 10.4213/sm7602


 English version:
Sbornik: Mathematics, 2010, 201:9, 1249–1271

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026