Abstract:
A criterion for the minimality of a Sasakian
hypersurface in a 6-dimensional Hermitian submanifold of the octave algebra is found. It is proved that the type number of a Sasakian hypersurface in a 6-dimensional Hermitian submanifold of the octave algebra is four or five. It is also proved that a Sasakian hypersurface in a 6-dimensional Hermitian submanifold of the Cayley algebra is minimal if and only if it is ruled.