RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2003 Volume 194, Number 7, Pages 105–118 (Mi sm754)

This article is cited in 3 papers

The property of compactness of the quasi-linearly perturbed harmonic-map equation

G. Yu. Kokarev

M. V. Lomonosov Moscow State University

Abstract: For maps $u\colon M\to M'$ of closed Riemannian manifolds a study is made of the quasi-linearly perturbed harmonic-map equation
$$ \tau(u)(x)=\mathsf G(x,u(x))\cdot du(x)+\mathsf g(x,u(x)), \qquad x\in M. $$
In the case of a non-positively curved manifold $M'$ and a small linear part of the perturbation $\mathsf G$ it is proved that the space of classical solutions in a fixed homotopy class is compact. The proof is based on a uniform estimate for the norm of the differential of a solution of the perturbed equation in terms of its energy and the $C^1$-norms of $\mathsf G$ and $\mathsf g$. The crux of this analysis is an inequality called the monotonicity property.

UDC: 517.57

MSC: Primary 53C43, 53C21, 35B20; Secondary 35J05, 58E20

Received: 24.12.2002

DOI: 10.4213/sm754


 English version:
Sbornik: Mathematics, 2003, 194:7, 1055–1068

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026