RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2003 Volume 194, Number 5, Pages 139–156 (Mi sm738)

This article is cited in 2 papers

On absolutely continuous weakly mixing cocycles over irrational rotations

A. V. Rozhdestvenskii

M. V. Lomonosov Moscow State University

Abstract: A weakly mixing cocycle over a rotation $\alpha$ is a measurable function $\varphi\colon S^1\to S^1$, where $S^1=\{z\in\mathbb C:|z|=1\}$, such that the equation
\begin{equation} \varphi^n(z)=c\frac{h(\exp(2\pi i\alpha)z)}{h(z)} \quad\text{for almost all \ </nomathmode><mathmode>$z$} \tag{1} \end{equation}
</mathmode><nomathmode> has no measurable solutions $h(\,\cdot\,)\colon S^1\to S^1$ for any $n\in\mathbb Z\setminus\{0\}$ and $c\in\mathbb C$, $|c|=1$.
If the irrational number $\alpha$ has bounded convergents in its continued fraction expansion and a function $M(y)$ increases more slowly than $y\ln^{1/2}y$, then it is proved that there exists a weakly mixing cocycle of the form $\varphi(\exp(2\pi ix))=\exp(2\pi i\widetilde\varphi(x))$, where $\widetilde\varphi\colon\mathbb T\to\mathbb R$ belongs to the class $W^1(M(L)(\mathbb T))$. In addition, it is shown that equation (1) (and also the corresponding additive cohomological equation) is soluble for $\widetilde\varphi\in W^1(L\log_+^{1/2}L(\mathbb T))$.

UDC: 517.987.5

MSC: Primary 28D04; Secondary 42Axx

Received: 29.11.2002

DOI: 10.4213/sm738


 English version:
Sbornik: Mathematics, 2003, 194:5, 775–792

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026