RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2003 Volume 194, Number 3, Pages 83–114 (Mi sm722)

This article is cited in 1 paper

Stabilization of the solution of a two-dimensional system of Navier–Stokes equations in an unbounded domain with several exits to infinity

N. A. Khisamutdinova

Sterlitamak State Pedagogical Institute

Abstract: The behaviour as $t\to\infty$ of the solution of the mixed problem for the system of Navier–Stokes equations with a Dirichlet condition at the boundary is studied in an unbounded two-dimensional domain with several exits to infinity. A class of domains is distinguished in which an estimate characterizing the decay of solutions in terms of the geometry of the domain is proved for exponentially decreasing initial velocities. A similar estimate of the solution of the first mixed problem for the heat equation is sharp in a broad class of domains with several exits to infinity.

UDC: 517.95

MSC: 76D05, 35Q30

Received: 14.03.2002

DOI: 10.4213/sm722


 English version:
Sbornik: Mathematics, 2003, 194:3, 391–422

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026