RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2003 Volume 194, Number 1, Pages 121–146 (Mi sm709)

This article is cited in 19 papers

Asymptotic analysis of a double porosity model with thin fissures

L. S. Pankratov, V. A. Rybalko

B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine

Abstract: An initial-boundary-value problem is considered for the parabolic equation
$$ \Phi^\varepsilon(x)u^\varepsilon_t-\operatorname{div}(A^\varepsilon(x) \nabla u^\varepsilon)=f^\varepsilon(x), \qquad x\in\Omega, \quad t>0, $$
with discontinuous diffusion tensor $A^\varepsilon(x)$. This tensor is assumed to degenerate as $\varepsilon\to0$ in the whole of the domain $\Omega$ except on a set ${\mathscr F}^{(\varepsilon)}$ of asymptotically small measure. It is shown that the behaviour of the solutions $u^\varepsilon$ as $\varepsilon\to0$ is described by a homogenized model with memory.

UDC: 517.946

MSC: 35K20, 35B27, 35R05

Received: 18.12.2001 and 14.08.2002

DOI: 10.4213/sm709


 English version:
Sbornik: Mathematics, 2003, 194:1, 123–150

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026