RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2003 Volume 194, Number 1, Pages 87–102 (Mi sm707)

This article is cited in 2 papers

Identities in the smash product of the universal envelope of a Lie superalgebra and a group algebra

M. V. Kochetov

M. V. Lomonosov Moscow State University

Abstract: Let $H$ be a Hopf algebra and $A$ an $H$-module algebra. Then one can form the smash product $A\#H$, which is a generalization of the ordinary tensor product (the latter occurs if the action of $H$ on $A$ is trivial). The case when $A\#H$ satisfies a polynomial identity is studied. Appropriate delta sets are introduced and necessary conditions on the action of $H$ on $A$ in terms of these delta sets for a certain class of algebras are given. The main theorem treats the special case when $H$ is a group algebra acting on a Lie superalgebra $L$ of characteristic zero. In this case the results obtained on delta sets, in combination with known facts about group algebras and universal enveloping algebras, enable one to give necessary and sufficient conditions for the existence of a polynomial identity in $U(L)\#H$.

UDC: 512.552.4

MSC: Primary 16W30; Secondary 16R10

Received: 25.04.2002

DOI: 10.4213/sm707


 English version:
Sbornik: Mathematics, 2003, 194:1, 89–103

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026