RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2003 Volume 194, Number 1, Pages 23–30 (Mi sm704)

This article is cited in 7 papers

$K_2$ for the simplest integral group rings and topological applications

P. M. Akhmet'ev

Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation

Abstract: We calculate the group $K_2(\Lambda)$, where $\Lambda=\mathbb Z/2[\pi]$ is the group ring of a fundamental group with coefficients in the field $\mathbb Z/2$ and $\pi=\mathbb Z/2\oplus\mathbb Z/2$ is the simplest elementary Abelian group of rank $2$. Using these calculations we estimate from below the value $K_2(\overline\Lambda)$, where $\overline\Lambda$ is the integral group ring of the group $\pi$. This calculation yields certain corollaries in the theory of pseudo-isotopies, since the group $Wh_2(\mathbb Z/2^2)$ turns out to be non-trivial. Constructions in differential topology are discussed that lead to calculations of $Wh_2$-valued invariants.

UDC: 515.164

MSC: Primary 13D15, 18F25; Secondary 11E70, 16S34, 57R67, 57N37

Received: 13.05.2002

DOI: 10.4213/sm704


 English version:
Sbornik: Mathematics, 2003, 194:1, 21–29

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026