RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2002 Volume 193, Number 11, Pages 71–104 (Mi sm692)

This article is cited in 10 papers

Aspherical pro-$p$-groups

O. V. Mel'nikov

Belarusian State University

Abstract: The notion of an aspherical pro-$p$-group is introduced. It is proved that if a group $G=F/N$ is aspherical, where $F$ is a free pro-$p$-group, then the relation $\mathbb F_p[[G]]$-module $\overline N=N/N^p[N,N]$ satisfies an assertion of the type of Lyndon's identity theorem. The finite subgroups and the centre of $G$ are described. The structure of an aspherical pro-$p$-group $G$ with a soluble normal subgroup $A\ne\{1\}$ is studied. In particular, if $A\cong\mathbb Z_p$, then $G$ contains a subgroup of finite index of the form $A\leftthreetimes W$ where $W$ is a free pro-$p$-group.

UDC: 512.546.37

MSC: Primary 20E18; Secondary 18G35, 20F05, 20E06

Received: 25.01.2002

DOI: 10.4213/sm692


 English version:
Sbornik: Mathematics, 2002, 193:11, 1639–1670

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026