RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2002 Volume 193, Number 9, Pages 3–40 (Mi sm677)

This article is cited in 4 papers

$L_p$-solubility of the Dirichlet problem for the heat equation in non-cylindrical domains

Yu. A. Alkhutov

Vladimir State Pedagogical University

Abstract: The Dirichlet problem for the heat equation is considered in bounded and unbounded domains of paraboloid type with isolated characteristic points at the boundary. Necessary and sufficient conditions in terms of the weight ensuring the unique solubility of this problem in weighted Sobolev $L_p$-spaces are found. In particular, a criterion for the solubility of the problem in the classical Sobolev space $W_{p,0}^{2,1}$ is established in the case when the domain is a ball.

UDC: 517.946

MSC: 35K05, 35K20

Received: 14.06.2001

DOI: 10.4213/sm677


 English version:
Sbornik: Mathematics, 2002, 193:9, 1243–1279

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026