RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2002 Volume 193, Number 7, Pages 69–86 (Mi sm667)

This article is cited in 10 papers

Koenigs function and fractional iterates of probability generating functions

V. V. Goryainov

The Volzhsky Institute of Humanities

Abstract: The Koenigs function arises as the limit of an appropriately normalized sequence of iterates of holomorphic functions. On the other hand it is a solution of a certain functional equation and can be used for the definition of iterates of the original function.
A description of the class of Koenigs functions corresponding to probability generating functions embeddable in a one-parameter group of fractional iterates is provided. The results obtained can be regarded as a test for the embeddability of a Galton–Watson process in a homogeneous Markov branching process.

UDC: 517.54+519.21

MSC: Primary 30D05; Secondary 60J80

Received: 23.10.2001

DOI: 10.4213/sm667


 English version:
Sbornik: Mathematics, 2002, 193:7, 1009–1025

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026