RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2002 Volume 193, Number 6, Pages 61–82 (Mi sm660)

This article is cited in 14 papers

Conservative systems of integral convolution equations on the half-line and the entire line

N. B. Engibaryan

Byurakan Astrophysical Observatory, National Academy of Sciences of Armenia

Abstract: The following system of integral convolution equations is considered:
$$ f(x)=g(x)+\int_a^\infty K(x-t)f(t)\,dt, \qquad -\infty\leqslant a<\infty, $$
where the $(m\times m)$-matrix-valued function $K$ satisfies the conditions of conservativeness
$$ K_{ij}\in L_1(\mathbb R), \quad K_{ij}\geqslant 0, \qquad A\equiv\int_{-\infty}^\infty K(x)\,dx\in P_N, \qquad r(A)=1. $$
Here $P_N$ is the class of non-negative indecomposable $(m\times m)$-matrices and $r(A)$ is the spectral radius of the matrix $A$. For $a=0$ the equation in question is a conservative system of Wiener–Hopf integral equations. For $a=-\infty$ this is the multidimensional renewal equation on the entire line. Questions of the solubility of the inhomogeneous and the homogeneous equations, asymptotic and other properties of solutions are considered.
The method of non-linear factorization equations is applied and developed in combination with new results in multidimensional renewal theory.

UDC: 517.9+519.24

MSC: 45B05, 45D05, 47G10

Received: 11.03.2001

DOI: 10.4213/sm660


 English version:
Sbornik: Mathematics, 2002, 193:6, 847–867

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026