RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2002 Volume 193, Number 4, Pages 87–112 (Mi sm645)

This article is cited in 1 paper

Spectral properties of two classes of periodic difference operators

A. A. Oblomkovab

a M. V. Lomonosov Moscow State University
b Independent University of Moscow

Abstract: A study is made of the iso-energetic spectral problem for two classes of multidimensional periodic difference operators. The first class of operators is defined on a regular simplicial lattice. The second class is defined on a standard rectangular lattice and is the difference analogue of a multidimensional Schrödinger operator. The varieties arising in the direct spectral problem are described, along with the divisor of an eigenfunction, defined on the spectral variety, of the corresponding operator. Multidimensional analogues are given for the Veselov–Novikov correspondences connecting the divisors of the eigenfunction with the canonical divisor of the spectral variety. Also, a method is proposed for solving the inverse spectral problem in terms of $\theta$-functions of curves lying “at infinity” on the spectral variety.

UDC: 517.958

MSC: Primary 47B39; Secondary 39A70, 47A40, 35P05, 35J10, 35R30

Received: 18.04.2001

DOI: 10.4213/sm645


 English version:
Sbornik: Mathematics, 2002, 193:4, 559–584

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026