RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2010 Volume 201, Number 8, Pages 127–160 (Mi sm6369)

This article is cited in 12 papers

Covering planar sets

V. P. Filimonov

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: Problems connected with the classical Borsuk problem on partitioning a set in Euclidean space into subsets of smaller diameter, and also connected with the Nelson-Hadwiger problem on the chromatic number of Euclidean space, are studied. New bounds are obtained for the quantities $d_n=\sup d_n(\Phi)$ and $d'_n=\sup d'_n(\Phi)$, where the suprema are taken over all sets of unit diameter on a plane, and where the quantities $d_n(\Phi)$ and $d'_n(\Phi)$ are defined for a given bounded set $\Phi\subset\mathbb{R}^2$ as follows:
\begin{align*} d_n(\Phi)&=\inf\{x\in\mathbb{R}^+:\Phi\subseteq \Phi_1\cup\dots\cup\Phi_n,\,\forall\, i\ \operatorname{diam}\Phi_i\le x\}, \\ d'_n(\Phi)&=\inf\{x\in\mathbb{R}^+:\Phi\subseteq \Phi_1\cup\dots\cup\Phi_n,\,\forall\, i\ \forall\, X,Y\in\Phi_i\,\ XY\ne x\}. \end{align*}
Here the $\Phi_i\subset\mathbb R^2$ are subsets, $\operatorname{diam}\Phi_i$ is the diameter of $\Phi_i$, $XY$ is the distance between the points $X$ and $Y$, and $n\in \mathbb N$. The bounds obtained for $d_n$ are better than any known before; this paper is the first to consider the values $d'_n$.
Bibliography: 19 titles.

Keywords: chromatic number, Borsuk problem, diameter of a set, coverings of planar sets, universal covering sets and systems.

UDC: 514.174

MSC: 52C15

Received: 27.05.2008 and 24.08.2009

DOI: 10.4213/sm6369


 English version:
Sbornik: Mathematics, 2010, 201:8, 1217–1248

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026