RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2002 Volume 193, Number 2, Pages 53–80 (Mi sm627)

This article is cited in 5 papers

Pseudodifference operators and uniform convergence of divided differences

I. K. Lifanov, L. N. Poltavskii

N.E. Zhukovsky Military Engineering Academy

Abstract: The concept of pseudodifference operator is introduced. The properties of a class of pseudodifference operators in spaces of fractional quotients are studied. A local theorem on the uniform convergence of divided differences of arbitrary order for an approximate solution is established. In particular, the local infinite differentiability of a precise solution of operator equations of elliptic type with locally infinitely differentiable right-hand side is proved on the basis of a numerical method. Examples related to applications are presented.

UDC: 517.5

MSC: Primary 39A13, 39A70, 65N99; Secondary 35J15

Received: 11.02.2001

DOI: 10.4213/sm627


 English version:
Sbornik: Mathematics, 2002, 193:2, 205–230

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026