RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2001 Volume 192, Number 11, Pages 93–122 (Mi sm611)

This article is cited in 5 papers

Kahler structures on the tangent bundles of rank-one symmetric spaces

I. V. Mykytyuk

Lviv Polytechnic National University

Abstract: For rank-one Riemannian symmetric spaces $G/K$, $\operatorname{dim}G/K\geqslant3$, with semisimple Lie groups $G$ all $G$-invariant Kahler structures $F$ on subdomains of the symplectic manifolds $T(G/K)$ are constructed. It is shown that this class $\{F\}$ of Kahler structures is stable under the reduction procedure. A Lie algebraic method of description of $G$-invariant Kahler structures on the tangent bundles of symmetric spaces $G/K$ is presented. Related questions of the description of the Lie triple system of the space $F_4/\operatorname{Spin}(9)$ in terms of its spinor structure are also discussed.

UDC: 514.765.1+512.813.4

MSC: 32Q15, 37J15

Received: 15.03.2001

DOI: 10.4213/sm611


 English version:
Sbornik: Mathematics, 2001, 192:11, 1677–1704

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026